Home
Class 12
MATHS
Evaluate : [ vec(a) + vec(b) &nbsp  ...

Evaluate :
`[ vec(a) + vec(b)     vec(b) + vec(c)      vec(c) + vec(a) ]`

Promotional Banner

Similar Questions

Explore conceptually related problems

|vec(a)|=2,|vec(b)|=3,|vec(c)|=6 . Angle between vec(a) and vec(b),vec(b) and vec(c) and vec(c) and vec(a) is 120^(@) each, find |vec(a)+vec(b)+vec(c)| ?

If vec(a)=vec(b)+vec(c ) , then |vec(a)|=|vec(b)+vec(c )| .

vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is vec (a). vec(b) + vec(b). vec(c) + vec(c). vec (a) equal to ?

If vec( A) + vec(B) =vec( C ) , and | vec(A)| =2 | vec( B) | and vec( B). vec( C ) = 0 , then

[vec(a)vec(b)vec(c )]=[vec(b)vec(c )vec(a)]=[vec(c )vec(a)vec(b)] .

Prove that: [vec(a)" "vec(b)" "vec( c )+vec(d)]=[vec(a)" "vec(b)" "vec( c )]+[vec(a)" "vec(b)" "vec(d)] .

Three vectors vec a, vec b and vec c satisfy the condition vec a + vec b + vec b + vec c = vec 0 .Evaluate the quantity mu = vec a * vec b + vec b * vec c + vec c * vec a , if | vec a | = 1 | vec b | = 4 and | vec c | = 2

If vec(a) , vec(b) and vec(c ) be three vectors such that vec(a) + vec(b) + vec(c )=0 and |vec(a)|=3, |vec(b)|=5,|vec(C )|=7 , find the angle between vec(a) and vec(b) .

If vec(a), vec(b) and vec(c ) are mutually perpendicular unit vectors and vec(a)xx vec(b)=vec(c ) , show that vec(b)=vec(c )xx vec(a) and vec(a)=vec(b)xx vec(c ) .

If [vec(a) vec(b) vec(c)]=4 then [vec(a)times vec(b) vec(b)times vec(c)vec(c) times vec(a)] =