Home
Class 10
MATHS
Evaluate : 0.overline 6 + 0.overline 7...

Evaluate :

`0.overline 6` + `0.overline 7` + `0.overline 8` + `0.overline 3`

Promotional Banner

Similar Questions

Explore conceptually related problems

0.overline(68) + 0. overline(73) = ?

Let overline a be vectors parallel to line of intersection of planes p_1 and p_2 through origin. If p_1 is parallel to the vectors 2overline j + 3 overline k and 4overline j - 3 overline k and p_2 is parallel to overline j - overline k and 3overline i - 3overline j, then the angle between overline a and 2overline i + overline j - 2overlinek is (A) pi/2 (B) pi/4 (C) pi/3 (D) pi/6

0.overline(142857 ) + 0.overline(285714 ) is equal to

The value of overline(23) + 0. overline(22) is

ABCDE is a pentagon. The resultant of the vectors overline(AB), overline(AE), overline(BC), overline(DC), overline(ED) and overline(AC) in terms of overline(AC) is

For vectors overline(a) and overline(b) and overline(a)+overline(b)ne=0 and overline(c) is a non-zero vector, then (overline(a)+overline(b))times(overline(c)-(overline(a)+overline(b)))=

Express each of the following as a rational number in simplest form. (a) 0.overline(6) (ii) 1.overline(8) (iii) 0.1overline6

If overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(b), overline(c)]]), overline(q)=(overline(c)timesoverline(a))/([[overline(a), overline(b), overline(c)]]), overline(r)=(overline(a)timesoverline(b))/([[overline(a), overline(b), overline(c)]]) , where overline(a), overline(b), overline(c) are three non-coplanar vectors, then (overline(a)-overline(b)-overline(c))*overline(p)-(overline(b)-overline(c)-overline(a))*overline(q)-(overline(c)-overline(a)-overline(b))*overline(r)=