Home
Class 11
MATHS
Evaluate : overline( 6 + i^3 ) +...

Evaluate :

`overline( 6 + i^3 )` + `overline( 9 - i )` + `overline( 9 + i^2 )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let overline a be vectors parallel to line of intersection of planes p_1 and p_2 through origin. If p_1 is parallel to the vectors 2overline j + 3 overline k and 4overline j - 3 overline k and p_2 is parallel to overline j - overline k and 3overline i - 3overline j, then the angle between overline a and 2overline i + overline j - 2overlinek is (A) pi/2 (B) pi/4 (C) pi/3 (D) pi/6

Draw logic diagrams for the Boolean expressions given below : (i) A * overline B + overline A * B = Y (ii) (A + overline B)* (overline A + B) = Y .

The work done by a force overlineF = 2 overline i- overline j-overline k in moving an object from origin to a point whose position vector is overline r = 3 overline i + 2 overline j - 5 overline k .

If the angle between overline(a) and overline(b) is (pi)/(6) and overline(c)=overline(a)+3overline(b) , then c^(2)=

If overline(a) is perpendicular to overline(b) and overline(c), |overline(a)|=2, |overline(b)=3, |overline(c)|=4 and the angle between overline(b) and overline(c) is (2pi)/(3) , then |[[overline(a), overline(b), overline(c)]]|=

If the angle between overline(b) and overline(c) is (pi)/(3) and overline(a)=overline(b)+4overline(c) , then a^(2)=

If |overline(a)|=5, |overline(b)|=3, |overline(c)|=4 and |overline(a)| is perpendicular to |overline(b)| and |overline(c)| such that the angle between |overline(b)| and |overline(c)| is (5pi)/(6) , then [[overline(a),overline(b), overline(c)]]=

The value of [[overline(a)-overline(b), overline(b)-overline(c), overline(c)-overline(a)]] where |overline(a)|=1, |overline(b)|=2 and |overline(c)|=3 is

If overline(c)=2overline(a)+5overline(b), |overline(a)|=a, |overline(b)|=b and the angle between overline(a) and overline(b) is (pi)/(3) , then c^(2) =