Home
Class 11
MATHS
prove thatlim(x->o)(1-3x)^(3/x)=e^-9...

prove that`lim_(x->o)(1-3x)^(3/x)`=`e^-9`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)(e^(2x)-1)/(3x)

prove that lim_(x rarr1)(x^(3)-1)/(x^(2)-1)=(3)/(2)

lim_(x->0) (x^3-3x+1)/(x-1)

lim_(x->0) (x^2-3x+1)/(x-1)

Prove that : lim_(x rarr0)((3^(x)+3^(-x)-2 ))/(x^(2))=(log_(e)3)^(2)

Prove that : lim_(x rarr0)(3^(x)+3^(-x)-2)/(x^(2))=(log_(e)3)^(2)

Prove that : lim_(x rarr0)(3^(x)+3^(-x)-2)/(x^(2))=(log_(e)3)^(2)

Prove that lim_(x rarr0)((1+x)^(1/2)-1)/((1+x)^(1/3)-1)=(3)/(2)

Prove that lim_(x rarr oo)(1+(2)/(x))^(x)=e^(2)

If f(x)=sin^(-1)x then prove that lim_(x rarr(1)/(2))f(3x-4x^(3))=pi-3lim_(x rarr(1)/(2))sin^(-1)x