Home
Class 12
MATHS
x(dy)/(dx)-y=x sqrt(x^(2)+y^(2))...

`x(dy)/(dx)-y=x sqrt(x^(2)+y^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

General solution of differential equation x^(2)(x+y(dy)/(dx))+(x(dy)/(dx)-y)sqrt(x^(2)+y^(2))=0 is

Solution of the differential equation x(dy)/(dx)=y+sqrt(x^(2)+y^(2)) , is

Solve the following differential equation: \ x(dy)/(dx)-y=2\ sqrt(y^2-x^2)

If tan^(-1) (y/x) = log sqrt(x^(2) + y^(2)) , prove that dy/dx = (x+y)/(x-y)

If y={x+sqrt(x^2+a^2)}^n , then prove that (dy)/(dx)=(n y)/(sqrt(x^2+a^2)) .

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If y={x+sqrt(x^2+a^2)}^n , then prove that (dy)/(dx)=(n y)/(sqrt((x^2+a^2)

If sqrt(y+x)+sqrt(y-x)=c ,show that (dy)/(dx)=y/x-sqrt((y^2)/(x^2)-1.)

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))