Home
Class 12
MATHS
(5) If f(x)=e^(x), then prove that f'(x)...

(5) If `f(x)=e^(x),` then prove that `f'(x)=e^(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

If f(x)=log_(e)x, then prove that :f(xyz)=f(x)+f(y)+f(z)

If f(x)=e^(1-x) then f(x) is

If f(x) =e^(-x) , then f'(x) is ?

If f(x)=e^(x)+2x , then f(ln 2)=

If f(x)=x.e^(x(1-x), then f(x) is

If f(x)=sin|x|-e^(|x|) then at x=0,f(x) is

If f(x)=|log_(e) x|,then

If f(x)=sinx+e^x , then f''(x)

Let f:R to R be defined by f(x) =e^(x)-e^(-x). Prove that f(x) is invertible. Also find the inverse function.