Home
Class 12
MATHS
If y = e^(x+2logx), then dy/dx=?...

If `y = e^(x+2logx)`, then `dy/dx`=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = e^(-x) , then (dy)/(dx) is

If y=e^x log x then (dy)/(dx) is

If y=x^((logx)^log(logx)) then (dy)/(dx)=

If x^y=e^(x-y) , then (dy)/(dx) is (a) (1+x)/(1+logx) (b) (1-logx)/(1+logx) (c) not defined (d) (logx)/((1+logx)^2)

If y=e^(x) then (dy)/(dx)

If y=acos(logx) , find (dy)/(dx) .

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If y=x^(logx)+(logx)^x then find (dy)/(dx)

If y=(logx)/x , show that (d^2y)/(dx^2)=(2logx-3)/(x^3) .

If y=(logx)/x ,show\ tha t(d^2y)/(dx^2)=(2logx-3)/(x^3)