Home
Class 12
MATHS
Let A=[(a,0,0),(0,a,0),(0,0,a)], then A^...

Let `A=[(a,0,0),(0,a,0),(0,0,a)]`, then `A^n` is equal to
a) `[(a^n,0,0),(0,a,0),(0,0,a)]` b) `[(na,0,0),(0,na,0),(0,0,na)]` c) `[(a^n,0,0),(0,a^n,0),(0,0,a^n)]` d) `[(a^n,0,0),(0,a^n,0),(0,0,a)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[(a,0, 0),( 0,a,0),( 0, 0,a)] , then A^n is equal to [(a^n,0, 0),( 0,a^n,0),(0, 0,a)] (b) [(a^n,0 ,0),( 0,a,0 ),(0, 0,a)] (c) [(a^n,0, 0),( 0,a^n,0),( 0, 0,a^n)] (d) [(n a,0, 0),( 0,n a,0 ),(0, 0,n a)]

If A=[(a,0,0),(0,a,0),(0,0,a)],a!=0 then | adj A| is equal to

If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1) , is

If A=[(a, 0,0),(0,b,0),(0,0,c)] and a,b,c are non zero real numbers, then A^-1 is (A) 1/(abc) [(1,0,0),(0,1,0),(0,0,1)] (B) 1/(abc) [(a,0,0),(0,b,0),(0,c,0)] (C) 1/(abc) [(a^-1,0,0),(0,b^-1,0),(0,c^-1,1)] (D) [(a^-1,0,0),(0,b^-1,0),(0,0,c^-1)]

The inverse of the matrix [(0,0,1),(0,1,0),(1,0,0)] is (A) [(0,0,1),(0,1,0),(1,0,0)] (B) [(0,0,-1),(0,-1,0),(-1,0,0)] (C) [(1,0,0),(0,1,0),(0,0,1)] (D) [(1/2,0,0),(0,1/2,0),(0,0,1/2)]

If P=[(x,0, 0),( 0,y,0 ),(0, 0,z)] and Q=[(a,0 ,0 ),(0,b,0 ),(0, 0,c)] , prove that P Q=[(x a,0 ,0 ),(0,y b,0),( 0 ,0,z c)]=Q P

If A=[(1,a),(0, 1)] , then A^n (where n in N) equals (a) [(1,n a),(0, 1)] (b) [(1,n^2a),(0, 1)] (c) [(1,n a),(0 ,0)] (d) [(n,n a),(0,n)]

If A=[(i,0), (0,i)],\ n in N , then A^(4n) equals [(0,i), (i,0)] (b) [(0 ,0) ,(0, 0)] (c) [(1, 0) ,(0, 1)] (d) [(0,i) ,(i,0)]

If A=[(1,2),(0,1)], then A^n= (A) [(1,2n),(0,1)] (B) [(2,n),(0,1)] (C) [(1,2n),(0,-1)] (D) [(1,n),(0,1)]

If A=[[0,1],[1,0]] , then A^2 is equal to: (a) [[0,1],[1,0]] (b) [[1,0],[0,1]] (c) [[1,0],[1,0]] (d) [[0,0],[1,1]]