Home
Class 12
MATHS
If tan ^(-1) x + tan^(-1) y + tan^(-1...

If ` tan ^(-1) x + tan^(-1) y + tan^(-1) z = pi `, then prove that
`x+ y + z = x y z`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)x + cot^(-1) (1/x) + 2tan^(-1)z =pi , then prove that x + y + 2z = xz^2 + yz^2 + 2xyz

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan^(-1) x+tan^(-1)y+tan^(-1)z=pi/2 then prove that yz+zx+xy=1

If tan^(-1) x + tan^(-1) y + tan ^(-1) z = (pi)/(2) , then value of xy + yz + zx a) -1 b) 1 c) 0 d) None of these

If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z =

If x+y+z=xyz , then tan^(-1)x+tan^(-1)y+tan^(-1)z=

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If x, y, z are in A.P. and tan^(-1) x, tan^(-1) y and tan^(-1)z are also in A.P. then show that x=y=z and y≠0

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz