Home
Class 10
MATHS
Find the value of x if log4 (x-1) = log2...

Find the value of `x` if `log_4 (x-1) = log_2 (x-3)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x if log_(x)4=-2

Find the value of x such that log_(0.3)(x-1) = log_(0.09)(x-1) .

Find the value of x,log_(4)(x+3)-log_(4)(x-1)=log_(4)8-2

Find the value of x, if log(2x-3)-log(11.66-x)=1+log3

Find the value of x, if log[log3+2log(1+x)]=0

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x1) [log_(x2) {log_(x3).........log_(x4) (x_n)^(x_(r=i))}]

The number of solution of log_4(x-1)=log_2(x-3) is :