Home
Class 11
MATHS
Find the value of x if log3 (1+log3 (2^x...

Find the value of `x` if `log_3 (1+log_3 (2^x - 7)) = 1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x, if log[log3+2log(1+x)]=0

If x = log_(3) 4 " and " y = log_(5) 3 , find the value of log_(3) 10 " and " log_(3) (1 . 2) in terms of x and y .

log_3 (4.3^x-1)=2x+1

Find the value of x, if log(2x-3)-log(11.66-x)=1+log3

Solve :log_(3)(1+log_(3)(2^(x)-7))=1

Find the value of x given that 2log_(10)(2^(x)-1)=log_(10)2+log_(10)(2^(x)+3)

The value of x satisfying log_(3)4 -2 log_(3)sqrt(3x +1) =1 - log_(3)(5x -2)

Find the value of x such that log_(0.3)(x-1) = log_(0.09)(x-1) .

Find the value of |(lim_( x to 1) (x^x-1)/(x log x )) /( lim_( xto0) (log (1-3x))/x)|