Home
Class 12
MATHS
Expand ab(a^2-b^2)+bc(b^2-c^2)+ca(c^2-a^...

Expand `ab(a^2-b^2)+bc(b^2-c^2)+ca(c^2-a^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ab + bc + ca = 0 , then the value of 1/(a^2 - bc) + 1/(b^2 - ca) + 1/(c^2 - ab) will be :

If ab+bc+ca=0 then prove that a^(2)b^(2)+b^(2)c^(2)+c^(2)a^(2)=-2abc (a+b+c)

Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to

If ab+bc+ca=0 , then the value of ((b^(2)-ca)(c^(2)-ab)+(a^(2)-bc)(c^(2)-ab)+(a^(2)-bc)(b^(2)-ca))/((a^(2)-bc)(b^(2)-ca)(c^(2)-ab)) is

det[[bc-a^(2),ca-b^(2),ab-c^(2)ca-b^(2),ab-c^(2),bc-a^(2)ab-c^(2),bc-a^(2),ca-b^(2)]]=det[[a,b,cb,c,ac,a,b]]^(2)

Show that |((b+c)^2,a^2,bc),((c+a)^2,b^2,ca),((a+b)^2,c^2,ab)|=(a^2+b^2+c^2)(a+b+c)(a-b)(b-c)(c-a).