Home
Class 12
MATHS
Prove that : ( vecA + vecB )^2 - ( ve...

Prove that :
`( vecA + vecB )^2 - ( vecA - vecB )^2 = 4 ( vecA . vecB )`

Promotional Banner

Similar Questions

Explore conceptually related problems

For vectors vecA and vecB , (vecA + vecB). (vecA xx vecB) will be :

If vec A . vecB = vecA*vecB , find |vecA - vecB|

(vecA+2vecB).(2vecA-3vecB) :-

Find vecA*vecB if |vecA|= 2, |vecB|= 5, and |vecAxx vecB|=8

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

Show that (veca xx vecb)^(2) = |veca| ^(2) |vecb|^(2) - (veca.vecb)^(2) = |(veca.veca)/(veca. vecb)(veca.vecb)/(vecb.vecb)|

Prove that: |(veca+vecb)xx(veca-vecb)|=2ab if veca_|_vecb

Prove that | vecaxxvecb | ^ 2 = det ((veca.veca, veca.vecb), (veca.vecb, vecb.vecb))

If for any two vectors veca and vecb. (veca + vecb )^(2) + (veca - vecb)^(2) =lamda[(veca)^(2)+ (vecb)^(2)] then write the value of lamda.

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . Vectors and vecb are given vectosrs, are