Home
Class 12
MATHS
(x+2)*(dy)/(dx)=(y^(2)+1)...

`(x+2)*(dy)/(dx)=(y^(2)+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following differential equation: \ y(1-x^2)(dy)/(dx)=x(1+y^2)

The solution of the differential equation (x^2+1)(dy)/(dx)+(y^2+1)=0 is a. y=2+x^2 b. y=(1+x)/(1-x) c. y=x(x-1) d. y=(1-x)/(1+x)

Solve the differential equation (1+x^2)(dy)/(dx)+(1+y^2)=0 , given that y=1, when x=0.

Solve the following differential equations x^(2)(1-y)(dy)/(dx)+y^(2)(1+x)=0

Solve the differential equation x^(2)(y+1)(dy)/(dx)+y^(2)(x+1)=0

If x = sin t , y = sin 2t , prove that (1-x^2)((dy)/(dx))^2=4(1-y^2)

If y(x) is solution of x(dy)/(dx)+2y=x^(2), y(1)=1 then value of y(1/2)= (a) -(49)/(16) (b) (49)/(16) (c) (45)/(8) (d) -(45)/(8)

The family of curves represented by (dy)/(dx)=(x^(2)+x+1)/(y^(2)+y+1) and the family represented by (dy)/(dx)+(y^(2)+y+1)/(x^(2)+x+1)=0

If y=e^("mcos"^(-1)x) , prove that: (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=m^(2)y

Solve: (dy)/(dx)=(1+y^2)/(1+x^2)