Home
Class 12
MATHS
Find : veca . ( vecb - vecc ) =...

Find :
`veca . ( vecb - vecc )` =

Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0 , find the value of veca.vecb+ vecb+ vecc.vecc + vecc.veca .

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc +vecc + vecc.veca is equal to

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If |veca| =5, |vecb| =4, |vecc| =3 and veca + vecb + vecc =0, then the vlaue of |veca, vecb + vecb.vecc+vecc,veca|, is

Statement 1: If V is the volume of a parallelopiped having three coterminous edges as veca, vecb , and vecc , then the volume of the parallelopiped having three coterminous edges as vec(alpha)=(veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc vec(beta)=(veca.vecb)veca+(vecb.vecb)vecb+(vecb.vecc)vecc vec(gamma)=(veca.vecc)veca+(vecb.vecc)vecb+(vecc.vecc)vecc is V^(3) Statement 2: For any three vectors veca, vecb, vecc |(veca.veca, veca.vecb, veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|=[(veca,vecb, vecc)]^(3)

If [ veca vecbvecc]=2 , then find the value of [(veca+2vecb-vecc) (veca - vecb) (veca - vecb-vecc)]