Home
Class 11
MATHS
Show that lim {x \rightarrow 0} {sin x}/...

Show that `lim _{x \rightarrow 0} {sin x}/{x} =1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim _{x \rightarrow 0} sin x. log x

lim _{x \rightarrow 0} sin x. log x

lim _{x \rightarrow 0} {e^x+sin x -1}/{log (1+x)}

lim _{x \rightarrow 0} {x sin x+log(1-x^2)}/{x^4}

Show that Lim_(x to 0 ) sin (1/x) does not exist .

Show that Lim_(x to 0 ) (| sin x |)/x does not exist .

Show that Lim_(x to 0 ) 1/x does not exist .

Evaluate: lim_(x to 0) (sin x)/(tan x)

lim_{x\rightarrow 0}(cosx-cos3x)/(x(sin 3x-sinx)) is equal to

Evaluate lim_(x to 0) ("sin" 4x)/(6x)