Home
Class 12
MATHS
(x-y)(dy)/(dx)=1 then (I.F)- (a) e^(-y),...

`(x-y)(dy)/(dx)=1` then `(I.F)`- (a) `e^(-y),` (b) `e^(-x)` (c) `e^(y)`(d) `e^(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(x-y)(1-(dy)/(dx))=e^(x)

The general solution of the differential equation (dy)/(dx)=e^(x+y) is (A) e^x+e^(-y)=C (B) e^x+e^y=C (C) e^(-x)+e^y=C (D) e^(-x)+e^(-y)=C

If y =( e^(x) + 1)/( e^(x)) ,then (dy)/(dx) =

if y^(x)=e^(y-x) then (dy)/(dx)

Solve (dy)/(dx)=e^(x-y)+x^(2)e^(-y) .

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=

(dy)/(dx)=(x+e^x)/(y+e^y)

(dy)/(dx)=e^(-y)sin x+e^((x-y))

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0

(x-y)(1-(dy)/(dx))=e^(y), where x-y=u A) ue^u-e^u=e^(x)+c B) u^(2)=e^(x)+c C) u^(2)=(1)/(2)e^(x)+c D) u^(2)e^(x)=2x+c