Home
Class 12
MATHS
If f(x)=((2^(x)-1)^(3))/(sin((x)/(p))log...

If `f(x)=((2^(x)-1)^(3))/(sin((x)/(p))log(1+(x^(2))/(3)))` is continuous at x=0 and `f(0)=6(log2)^(3)`then p =

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:(,((4^(x)-1)^(3))/(sin(x//4)log(1+x^(2)//3)),x ne 0),(,k,x=0):} is a continous at x=0, then k=

f(x)=sqrt(log((3x-x^(2))/(x-1)))

The value of lim_(xrarr0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)) ,is

If f(x)=(sin^(- 1)x)^2*cos(1/ x)"if"x!=0;f(0)=0,f(x) is continuous at x= 0 or not ?

The function f(x)=((3^x-1)^2)/(sinx*ln(1+x)), x != 0, is continuous at x=0, Then the value of f(0) is

If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is continuous at x =1 then

The value of a for which the function f(x)=f(x)={((4^x-1)hat3)/(sin(x a)log{(1+x^2 3)}),x!=0 12(log4)^3,x=0 may be continuous at x=0 is 1 (b) 2 (c) 3 (d) none of these

If f(x)=(sin3pix+Asin5pix+Bsinpix)/((x-1)^(5)) for x!=1 is continuous at x=1 and f(x)=(p^(2)pi^(5))/((p+1)) , then evaluate p.

The value of a for which the function f(x)={(((4^x-1)^3)/(sin(x/a)log(1+x^2/3)) ,, x!=0),(12(log4)^3 ,, x=0):} may be continuous at x=0 is :

Determine f(0) so that the function f(x) defined by f(x)=((4^x-1)^3)/(sinx/4log(1+(x^2)/3)) becomes continuous at x=0