Home
Class 12
MATHS
lim(n rarr oo)(1^(2)+2^(2)+3^(2)+cdots n...

`lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+cdots n^(2))/(n^(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo)3^(1/n) equals

lim_(n to oo){(1^(m)+2^(m)+3^(m)+...+ n^(m))/(n^(m+1))} equals

lim_(n rarr oo)(1)/(2)+(1)/(2^(2))+(1)/(2^(3))+...+(1)/(2^(n)) equals (a) 2 (b) -1 (c) 1 (d) 3

lim_(n rarr oo)((1+1/(n^(2)+cos n))^(n^(2)+n) equals

1. lim_(n rarr oo)(n+n^(2)+n^(3)+...*n^(n))/(1^(n)+1^(n)+3^(n)+cdots+n^(n))

1. lim_(n rarr oo)(n+n^(2)+n^(3)+...*n^(n))/(1^(n)+1^(n)+3^(n)+cdots+n^(n))

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

lim_(nrarroo) ((1^(k)+2^(k)+3^(k)+"......"n^(k)))/((1^(2)+2^(2)+"....."+n^(2))(1^(3)+2^(3)+"....."+n^(3))) = F(k) , then (k in N)