Home
Class 12
MATHS
Prove that lim(x->0) (sqrt(1-x)-1)/x=-1/...

Prove that `lim_(x->0) (sqrt(1-x)-1)/x=-1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sqrt(1+x)-1)/(x)=(1)/(2)

lim_(x rarr0)(sqrt(x+1)-1)/(x)

lim_(x rarr0)(sqrt(x+1)-1)/(x)

lim_(x rarr0)((sqrt(1+x)-1)/(x))

lim_(xrarr0) (sqrt(1+x+x^(2))-1)/(x)

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .

lim_(x rarr0)(x)/(sqrt(1+x))-1

lim_(x to 0) (x)/(sqrt(1+x-1))

Prove that: lim_(x rarr oo)x(sqrt(x^(2)+1)-sqrt(x^2-1))) = 1