Home
Class 11
MATHS
lim(n to oo) (2^(1/n)-1)/(2^(1/n)+1)=...

`lim_(n to oo) (2^(1/n)-1)/(2^(1/n)+1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

7. lim_(n->oo) (2^(1/n)-1)/(2^(1/n)+1)

lim_(n rarr oo)2^(1/n)

lim_(n to oo)(1-2n^(2))/(5n^(2)-n+100)=

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

lim_(n->oo) nsin(1/n)

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to

lim_(n to oo) {(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(3n)}=

lim_(n to oo)(n!)/((n+1)!-n!)

lim_(n->oo)2^(n-1)sin(a/2^n)

Discuss the continuity of f(x)=(lim)_(n->oo)(x^(2n)-1)/(x^(2n)+1)