Home
Class 11
MATHS
If a is an invertible matrix of order n,...

If `a` is an invertible matrix of order `n`,then `|adj A|` equals :
(a) `|A|^(n)`
(b) `|A|^(n+1)`
(c) `|A|^(n-1)`
(d) `|A|^(n+2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is a non singular square matrix then |adj.A| is equal to (A) |A| (B) |A|^(n-2) (C) |A|^(n-1) (D) |A|^n

If A is an invertible matrix of order nxxn, (nge2), then (A) A is symmetric (B) adj A is invertible (C) Adj(Adj A)=|A|^(n-2)A (D) none of these

If A is a nilpotent matrix of index 2, then for any positive integer n ,A(I+A)^n is equal to (a) A^(-1) (b) A (c) A^n (d) I_n

If A is a square matrix of order n xx n and k is a scalar, then adj (kA) is equal to (1) k adj A (2) k^n adj A (3) k^(n-1) adj A (4) k^(n+1) adj A

If A is a square matrix of order n xx n and k is a scalar, then adj (kA) is equal to (1) k adj A (2) k^n adj A (3) k^(n-1) adj A (4) k^(n+1) adj A

If d is the determinant of a square matrix A of order n , then the determinant of its adjoint is d^n (b) d^(n-1) (c) d^(n+1) (d) d

If I_n is the identity matrix of order n then (I_n)^-1 (A) does not exist (B) =0 (C) =I_n (D) =nI_n

If k in R_o then det{adj(k I_n)} is equal to (A) K^(n-1) (B) K^((n-1)n) (C) K^n (D) k

If A is an invertible square matrix of the order n such that |A| ne1 and |adj(adjA)|=|A|^((2n^(2)-7n+7)) then the sum of all possible values of n is

Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the for ngeq2. A^n is equal to 2^(n-1)A-(n-1)l b. 2^(n-1)A-I c. n A-(n-1)l d. n A-I