Home
Class 9
MATHS
The value of (a+b)^2/(a^2-b^2) is...

The value of `(a+b)^2/(a^2-b^2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (a+b)^(2) - (a-b)^(2) is

If a,b , c are in AP, then, find the value of (a-c)^2/(b^2-ac)

If a , b are two real numbers with a < b then a real number c can be found between a and b such that the value of (a^2+a b+b^2)/(c^2)i s_____

If (a-b)/(b)=(2)/(3) , what is the value of (a)/(b) ?

What is the value of {((a+b)^(2) - (a^(2) +b^(2)))/((a+b)^(2) - (a-b)^(2))}?

The value of [{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}/{(a-b)^3+(b-c)^3+(c-a)^3}] = (1) 3(a+b)(b+c)(c+a) (2) 3(a-b)(b-c)(c-a) (3) (a+b)(b+c)(c+a) (4) 1

If a+b=7 and a b=12 , find the value of (a^2-a b+b^2)

If a+b=7 and a b=12 , find the value of (a^2-a b+b^2)

If a : b=2:5, . find the value of (3a+2b)/(4a+b)

If a+b=7 and ab=12 find the value of a^(2)-ab+b^(2) .