Home
Class 11
PHYSICS
Beat phenomenon is physically meaningful...

Beat phenomenon is physically meaningful only if
(A) `|omega_(1) -omega_(2)|`>>`|omega_(1) + omega_(2)|`
(B) `|omega_(1) - omega_(2)|`<<`|omega_(1) + omega_(2)|`
(C)`(omega_(1))/(omega_(2))``<`17
(D) `|omega_(1)+omega_(2)|`>>`(omega_(1))/(omega_(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

Prove the following (1- omega + omega^(2)) (1 + omega- omega^(2)) (1 - omega- omega^(2))= 8

Prove that (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16)).... to 2^(n) factors = 2^(2n) .

Prove the following (a + b omega + c omega^(2))/(c + a omega + b omega^(2)) + (a + b omega + c omega^(2))/(b + c omega + a omega^(2)) = -1

Prove the following (a + b omega + c omega^(2))/(b + c omega + a omega^(2))= omega

If omega is a cube root of unity, then Root of polynomial is |(x + 1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)|

If omega is a non-real cube root of unity, then Delta = |(a_(1) + b_(1) omega,a_(1) omega^(2) + b_(1),a_(1) + b_(1) + c_(1) omega^(2)),(a_(2) + b_(2) omega,a_(2) omega^(2) + b_(2),a_(2) + b_(2) + c_(2) omega^(2)),(a_(3) + b_(3) omega,a_(3) omega^(2) + b_(3),a_(3) + b_(3) + c_(3) omega^(2))| is equal to

Let omega=-1/2+i(sqrt(3))/2 . Then the value of the determinant |(1,1,1),(1,-1-omega^2,omega^2),(1,omega^2,omega^4)| is (A) 3omega (B) 3omega(omega-1) (C) 3omega^2 (D) 3omega(1-omega)

(2+omega+omega^2)^3+(1+omega-omega^2)^8-(1-3omega+omega^2)^4=1