Home
Class 13
MATHS
16.Cauchy's dispersion formula is ------...

16.Cauchy's dispersion formula is --------------------- . `(a) mu=A+B lambda^(2)+C lambda^(4)` , `(b) mu=A+B lambda^(-2)+C lambda^(-4) `, `(c) mu=A+B lambda^(2)+C lambda^(-1)`, ` (d) mu=A+B lambda^(2)+C lambda^(4) `

Promotional Banner

Similar Questions

Explore conceptually related problems

Two particle are moving perpendicular to each with de-Broglie wave length lambda_(1) and lambda_(2) . If they collide and stick then the de-Broglie wave length of system after collision is : (A) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (B) lambda = (lambda_(1))/(sqrt(lambda_(1)^(2) + lambda_(2)^(2))) (C) lambda = (sqrt(lambda_(1)^(2) + lambda_(2)^(2)))/(lambda_(2)) (D) lambda = (lambda_(1) lambda_(2))/(sqrt(lambda_(1) + lambda_(2)))

According of Kohlrausch law, the limiting value of molar conductivity of an electrolyte A_(2)B is (a) lambda^(oo) ._(A^(+)) + lambda^(oo) ._((B^(-)) (b) lambda^(oo) ._(A^(+)) - lambda^(oo) ._(B^(-)) (c) 2lambda^(oo) ._(A^(+)) +(1)/(2)lambda^(oo) ._((B^(-)) (d) 2lambda^(oo) ._(A^(+)) + lambda^(oo) ._(B^(-))

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.

If b-c,2b-lambda,b-a " are in HP, then " a-(lambda)/(2),b-(lambda)/(2),c-(lambda)/(2) are is

If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]| then t=

If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]| then t=

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

If sin2A= lambda sin 2B prove that (tan(A+B)/tan(A-B))=(lambda+1)/(lambda-1)

If sin2A= lambda sin 2B prove that (tan(A+B)/tan(A-B))=(lambda+1)/(lambda-1)

("log"_(2)a)/(3) = ("log"_(2)b)/(4) = ("log"_(2)c)/(5lambda) " and " a^(-3) b^(-4) c = 1 " then " lambda =