Home
Class 12
MATHS
x*(dy)/(dx)-y=y^(3)*log x...

`x*(dy)/(dx)-y=y^(3)*log x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the differential equation x(dy)/(dx)=y(log y - log x +1) .

Solve (dy)/(dx)+(y)/(x)=log x.

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

Solve: (dy)/(dx)=e^(x+y) (ii) log((dy)/(dx))=a x+b y

Find (dy)/(dx) when y= (x^(log x)) ( log x)^(x), x gt 1

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

The solution of the differential equaton (dy)/(dx)=(x log x^(2)+x)/(sin y+ycos y) , is

If y=xlog(x/(a+b x)),t h e nx^3(d^2y)/(dx^2)= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^2 y(dy)/(dx)-x (d) (y(dy)/(dx)-x)^2