Home
Class 12
MATHS
Show that : lim( x -> 9 ) sqrt( x ) = ...

Show that :
`lim_( x -> 9 ) sqrt( x ) = 3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Calculate : lim_( x -> 0 ) x/( 3- sqrt( x + 9 )

Evaluate : lim_( x -> 7 ) (( 4 - sqrt( 9 + x ) )/ ( 1 - sqrt( 8 - x ) ) )

Evaluate : lim_( x -> 7 ) (( 4 - sqrt( 9 + x ) )/ ( 1 - sqrt( 8 - x ) ) )

Evaluate : lim_( x -> 7 ) (( 4 - sqrt( 9 + x ) )/ ( 1 - sqrt( 8 - x ) ) )

Evaluate : lim_( x ->0 ) ( (-3 + sqrt( x^2 + 9 ) ) / x^2 )

Evaluate : lim_(x -> 0) x/ ( (3 - sqrt ( x + 9 ) )

Show that lim_(x rarr oo){sqrt(x^(2)+x)-x}=(1)/(2)

lim_(x rarr sqrt(3))[x]

Show that lim_(x rarr oo)(sqrt(x^(2)+x+1)-x)!=lim_(x rarr oo)(sqrt(x^(2)+1)-x)

lim_(x rarr1)(sqrt(x)+3)