Home
Class 12
MATHS
(dy)/(dx)=((x+y)^(2))/(2x^(2))...

`(dy)/(dx)=((x+y)^(2))/(2x^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let y=f (x) and x/y (dy)/(dx) =(3x ^(2)-y)/(2y-x^(2)),f(1)=1 then the possible value of 1/3 f(3) equals :

Solve 2(dy)/(dx)=(y)/(x)+(y^(2))/(x^(2))

(dy)/(dx)=(x+e^(2x))/(y)

Solve (dy)/(dx)=((x+y)^(2))/((x+2)(y-2))

Solve the following differential equations (dy)/(dx)=(x^(2)+y^(2))/(x^(2)+xy)

If (dy)/(dx)=(2^(x+y)-2^(x))/(2^(y)),y(0)=1 then y(1) is equal to

Solve the following differential equations (dy)/(dx)=(x^(2)+xy+y^(2))/(x^(2))

If y(dy)/(dx) = x[(y^(2))/(x^(2)) +(phi((y^(2))/(x^(2))))/(phi'((y^(2))/(x^(2))))], x ge 0, phi gt 0 , y(1) = -1, then phi((y^(2))/(4)) is equal to :

The solution of the differential equation (dy)/(dx)=(x^(2)+xy+y^(2))/(x^(2)), is tan^(-1)((x)/(y))^(2)=log y+Ctan^(-1)((y)/(x))=log x+Ctan^(-1)((x)/(y))=log x+Ctan^(-1)((y)/(x))=log y+C