Home
Class 12
MATHS
Prove that 2tan^(-1)((1)/(3))+tan^(-1)((...

Prove that `2tan^(-1)((1)/(3))+tan^(-1)((1)/(7))=(pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that: 2 tan ^(-1).(1)/(3) + tan^(-1).(1)/( 7) = (pi)/(4)

Statement 1: tan^(-1)((3)/(4))+tan^(-1)((1)/(7))=(pi)/(4) Statement 2: For x gt 0, Y gt 0 tan^(-1)((x)/(y))+tan^(-1)((y-x)/(y+x))=(pi)/(4)

Prove that : tan^(-1).(1)/(4)+tan^(-1).(2)/(9)=(1)/(2)sin^(-1).(4)/(5)

Prove that: 2sin^(-1)(3/5)=tan^(-1)((24)/7)

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)(31/17)

Prove that: tan^(-1)(1/7)+tan^(-1)(1/(13))=tan^(-1)(2/9) tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4 tan^(-1)(3/4)+tan^(-1)(3/5)-tan^(-1)(8/19)=pi/4

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)((31)/(17))

Prove that 2tan^(-1)(1/2)+tan^(-1)(1/7)=sin^(-1)((31)/(25sqrt(2)))

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that tan^(- 1)(1/3)+tan^(- 1)(1/7)+tan^(- 1)(1/13)+..........+tan^-1 (1/(n^2+n+1))+......oo =pi/4