Home
Class 12
MATHS
tan^(-1)(3x+1)+tan^(-1)(1/4)=(pi)/(4)...

`tan^(-1)(3x+1)+tan^(-1)(1/4)=(pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

Q.solve for x ,tan ^(-1)(2x)+tan^(-1)(3x)=(pi)/(4)

Prove that : tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

If tan^(-1)(2x)+tan^(-1)(3x)=(pi)/(4) , then find the value of x.

Solve for x:tan^(-1)3x+tan^(-1)2x=(pi)/(4)

The value of x satisfying the equation tan^(-1)(2x)+tan^(-1)3x=(pi)/(4) is

Prove that tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4