Home
Class 12
MATHS
tan^(-1)(3/5)-tan^(-1)(x+2)=(pi)/(2)...

`tan^(-1)(3/5)-tan^(-1)(x+2)=(pi)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

If tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6), then prove that x^(2)=2sqrt(3).

tan^(-1)x+tan^(-1)(1)/(x)={[(pi)/(2), if x>0-(pi)/(2), if x<0

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

If tan^(-1)(a/x) + tan^(-1)(b/x) =pi/2 , then: x=

If tan^(-1)(a/x) + tan^(-1)(b/x) = pi/2 , then: x=……

Prove that : tan^(-1)2+tan^(-1)3=(3 pi)/(4)

tan^(-1) . 3/5 +tan^(-1) . 1/4 = pi/2

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))