Home
Class 12
MATHS
tan^(-1)(x-1)=(5pi)/3...

`tan^(-1)(x-1)=(5pi)/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

If tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(6), then prove that x^(2)=2sqrt(3).

Prove that : tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)

Prove that: tan^(-1)(1)/(7)+tan^(-1)(1)/(13)=tan^(-1)(2)/(9)tan^(-1)+tan^(-1)(1)/(5)+tan^(-1)(1)/(8)=(pi)/(4)tan^(-1)(3)/(4)+tan^(-1)(3)/(5)-tan^(-1)(8)/(19)=(pi)/(4)tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)(1)/(13)

tan^(-1)(tan((5 pi)/(3)))

tan^(-1)x+tan^(-1)(1)/(x)={[(pi)/(2), if x>0-(pi)/(2), if x<0

Let theta = tan^(-1) ( tan . (5pi)/4) " and " phi = tan^(-1) ( - tan . (2pi)/3) then

Let tan^(-1) ( tan. (5pi)/(4))=alpha, tan^(-1) (-tan. (2pi)/(3))=beta , then