Home
Class 11
MATHS
Solve for theta: (2-sintheta)/(4costheta...

Solve for `theta`: `(2-sintheta)/(4costheta)=costheta/(2+sintheta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2"cosec"theta

Prove that : (1+sintheta)/(costheta)+(costheta)/(1+sintheta)=2sectheta

Find the value of theta , if (costheta)/(1-sintheta)+(costheta)/(1+sintheta)=4,thetale90^(@) .

If the angle theta is acute, then the angle between the pair of lines given by (costheta-sintheta)x^(2)+2(costheta)xy+(costheta+sintheta)y^(2)=0 is

If (sintheta+costheta)/(sintheta-costheta)=3 and theta is an acute angle, then the value of (3sintheta+4costheta)/(8costheta-3sintheta) is

Consider a matrix A (theta)= [(sintheta,costheta),(-costheta,sintheta)] then

If 5 cos theta-12sintheta=0, the value of overset(2sintheta+costheta) (costheta-sintheta) is:

((1-sintheta+costheta)^(2))/((1+costheta)(1-sintheta))=?

Prove that : (sintheta-costheta)/(sintheta+costheta)+(sintheta+costheta)/(sintheta-costheta)=(2)/(2sin^(2)theta-1)

Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta[{:(sin theta ,-costheta),(costheta, sintheta):}]