Home
Class 12
MATHS
(i)prove that, lim(n rarr oo)(n^(2)+1)/...

(i)prove that, `lim_(n rarr oo)(n^(2)+1)/(2n^(2)+3)=(1)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

lim_(n to oo)(1-2n^(2))/(5n^(2)-n+100)=

lim_(n rarr oo)3^(1/n) equals

Prove that lim_(n->oo)(1+1/n)^n=e

lim_(n rarr oo)(3+sqrt(n))/(sqrt(n))

lim_(n rarr oo)((1+1/(n^(2)+cos n))^(n^(2)+n) equals

lim_(n rarr oo)((n+1)^(4)-(n-1)^(4))/((n+1)^(4)+(n-1)^(4))

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

Evaluate: ("lim")_(n rarr oo)[(n !)/(n^n)]^(1//n)

7. lim_(n->oo) (2^(1/n)-1)/(2^(1/n)+1)