Home
Class 11
MATHS
If y=xlog⁡y; prove that ∂y/∂x=y^2/(∂x(y−...

If y=xlog⁡y; prove that ∂y/∂x=y^2/(∂x(y−x)),

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^x prove that (d^2y)/(dx^2)-1/(y)(dy/dx)^2-y/x=0

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

If y=x/(x+2) , prove that x(dy)/(dx)=(1-y)y

If x ylog(x+y)=1 , prove that (dy)/(dx)=-(y(x^2y+x+y))/(x(x y^2+x+y))

If y=x+x^2+x^3+…………oo, prove that x= y/(1+y)

If y=sin(logx) , prove that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

If x y\ log(x+y)=1 , prove that (dy)/(dx)=-(y(x^2y+x+y))/(x(x y^2+x+y)) .

If (sinx)^y=x+y , prove that (dy)/(dx)=(1-(x+y)ycotx)/((x+y)logsinx-1)

If y=x^(x) , prove that: (d^(2)y)/(dx^(2))-1/y((dy)/(dx))^(2) - y/x=0