Home
Class 11
MATHS
Prove that : ( 1 + tan^2A ) ( 1 + 1/t...

Prove that :
`( 1 + tan^2A ) ( 1 + 1/tan^2A ) = 1 /( Sin^2A - Sin^4A )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1+(1)/(tan^(2)A))(1+(1)/(cot^(2)A))=(1)/((sin^(2)A- sin^(4)A)).

Prove that (1 - tan^(2) theta)/(1 + tan^(2) theta) = cos^(2) - sin^(2) theta

Prove: (1+tan^(2)A)+(1+(1)/(tan^(2)A))=(1)/(sin^(2)A-sin^(4)A)

Prove that : (i) sin(tan^(-1)1) = 1/(sqrt(2))

Prove that : (1 - tan^(2) theta)/(1 + tan^(2) theta) = cos^(2) theta - sin^(2) theta

(1 + tan A) / (1-tan A) = (cos2A) / (1-sin2A)

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove that (1+ tan^4 theta)/(1+ tan^2 theta) = sec ^2 theta-2 sin^2theta

Prove that: (tan A)/(1+tan^2A)^2 + (cot A)/(1+cot^2A)^2 = sin A cos A .

Prove that: sec^4A(1-sin^4A) -2 tan^2A=1 .