Home
Class 10
MATHS
Show that : ( 1 + tanAtanB )^2 + ( ta...

Show that :
`( 1 + tanAtanB )^2 + ( tanA - tanB )^2 = Sec^2A Sec^2B`

Promotional Banner

Similar Questions

Explore conceptually related problems

(6) 1+tanA tan2A = sec2A

Prove that (tan A-tan B)^(2)+(1+tan A tan B)^(2)=sec^(2)A sec^(2)B

Prove the following identities: (1+tan A tan B)^(2)+(tan A-tan B)^(2)=sec^(2)A sec^(2)B(tan A+csc B)^(2)-(cot B-sec A)^(2)=2tan A cot B(csc A+sec B)

Prove that: (tanA + tanB)/(cotA+cotB)=tanAtanB

Prove that- sin(A-B)/sin(A+B)= (tanA-tanB)/(tanA+tanB)

Prove that- sin(A-B)/sin(A+B)= (tanA-tanB)/(tanA+tanB)

(sec A sec B+tan A tan B)^(2)-(sec A tan B+tan A sec B)^(2)=1

(sec A sec B+tan A tan B)^(2)-(sec A tan B+tan A sec B)^(2)=1

Prove the following identity: (sec A sec B+tan A tan B)^(2)-(sec A tan B+tan A sec B)^(2)=1

If A+B=315^@ then (1-tanA)(1-tanB)=