Home
Class 11
MATHS
Find x : log(10)(x-9)+log(10)x=1...

Find x :
`log_(10)(x-9)+log_(10)x=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the real solution to the system of equation log_(10)(2000xy)-log_(10)x*log_(10)y=4,log_(10)(2yz)-log_(10)y*log_(10)z=1 and log_(10)(2x)-log_(10)x*log_(10)x=

Find the real solutions to the system of equations log_(10)(2000xy)-log_(10)x.log_(10)y=4log_(10)(2yz)-log_(10)y log_(10)z=1 and log_(10)zx-log_(10)z log_(10)x=0

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

Solve for x, (a) (log_(10)(x-3))/(log_(10)(x^(2)-21))=(1)/(2),(b)log(log x)+log(log x^(3)-2)=0; where base of log is 10 everywhere.

if x+log_(10)(1+2^(x))=x log_(10)5+log_(10)6 then x

log_(10){log10x}=1 then x

Find the value of x given that 2log_(10)(2^(x)-1)=log_(10)2+log_(10)(2^(x)+3)

If (3log_(10)x+19)/(3log_(10)x-1)=2 log_(10)x+1, find solution of equation.