Home
Class 12
MATHS
The range of f(n)=sqrt(2{n}-{n}^(2)-(3)/...

The range of `f(n)=sqrt(2{n}-{n}^(2)-(3)/(4)),` (where `{*}` is fractional part function) is

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function y=sqrt(2{x}-{x}^2-3/4) (where, denotes the fractional part) is

Range of the function f (x) = cos^-1 (-{x}) , where {.} is fractional part function, is:

The range of y=2^({x}) is , where {.} fractional part function

The domain of the function f(x)=1/(sqrt({sinx}+{sin(pi+x)})) where {dot} denotes the fractional part, is (a) [0,pi] (b) (2n+1)pi/2, n in Z (c) (0,pi) (d) none of these

The domain of the function f(x)=1/(sqrt({sinx}+{sin(pi+x)})) where {dot} denotes the fractional part, is (a) [0,pi] (b) (2n+1)pi/2, n in Z (0,pi) (d) none of these

The domain of the function f (x) = sin^(-1)((1+x^3)/(2x^(3/2)))+sqrt(sin(sinx))+log_(3{x}+1)(x^2+1) , where {.} represents fractional part function, is:

Let f (x) = lim _(n to oo) n ^(2) tan (ln(sec""(x)/(n )))and g (x) = min (f(x), {x}} (where {.} denotes fractional part function) Left derivative of phi(x) =e ^(sqrt(2f (x))) at x =0 is:

The range of f(x)=(x+1)(x+2)(x+3)(x+4)+5 for x in [-6,6] If the range of the function is [a,b] where a,b,∈N then find the value of (a+b).

The range of the Function f(x) = {sinx-2/{3}} is ......(Where {.} denotes fractional Part)?

The range of the function f(x) = frac{1-{x}}{1+{x}} is (where {.} denotes the fractional part of x )