Home
Class 12
MATHS
Show that : lim( x -> 0 ) ( Sinu(x ))/...

Show that :
`lim_( x -> 0 ) ( Sinu(x ))/ ( u(x) ) = 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show : lim_( x -> 0 ) tan^(-1)x/ sin^(-1)x = 1

Evaluate : lim_( x -> 0 )( ( 1-x ) ^( 1/n ) -1) /x =

Show that : lim_(x rarr1)(2x-1)=1

Show that lim_(x rarr 0^+) (1+x)^(1/x) =e

Show that : lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

Show that lim_(x rarr0)(e^(x)-1)/(sqrt(1+x)-1)=2

Show that : Lim_(x rarr0)(e^(x)-sin x-1)/(x)=0

lim_(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

lim_(x rarr0)x sin((1)/(x))