Home
Class 14
MATHS
Solve the equations given below and give...

Solve the equations given below and give answer
1) if `x lt y` 2) if `x gt y`
3) if `c ge y` 4) if `x le y`
5) if x=y or no relation can be established
I. `2x^2-(4+sqrt13)x+2sqrt13=0` II. `10y^2-(18+5sqrt13)y+9sqrt13=0`

A

if `x lt y`

B

if `x gt y`

C

if `x ge y`

D

if `x le y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations and determine the relationship between \( x \) and \( y \), we will follow these steps: ### Step 1: Solve the first equation for \( x \) The first equation is: \[ 2x^2 - (4 + \sqrt{13})x + 2\sqrt{13} = 0 \] We can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 2 \), \( b = -(4 + \sqrt{13}) \), and \( c = 2\sqrt{13} \). 1. Calculate \( b^2 - 4ac \): \[ b^2 = (4 + \sqrt{13})^2 = 16 + 8\sqrt{13} + 13 = 29 + 8\sqrt{13} \] \[ 4ac = 4 \cdot 2 \cdot 2\sqrt{13} = 16\sqrt{13} \] \[ b^2 - 4ac = (29 + 8\sqrt{13}) - 16\sqrt{13} = 29 - 8\sqrt{13} \] 2. Now substitute back into the quadratic formula: \[ x = \frac{4 + \sqrt{13} \pm \sqrt{29 - 8\sqrt{13}}}{4} \] ### Step 2: Solve the second equation for \( y \) The second equation is: \[ 10y^2 - (18 + 5\sqrt{13})y + 9\sqrt{13} = 0 \] Using the quadratic formula again with \( a = 10 \), \( b = -(18 + 5\sqrt{13}) \), and \( c = 9\sqrt{13} \): 1. Calculate \( b^2 - 4ac \): \[ b^2 = (18 + 5\sqrt{13})^2 = 324 + 180\sqrt{13} + 25 \cdot 13 = 324 + 180\sqrt{13} + 325 = 649 + 180\sqrt{13} \] \[ 4ac = 4 \cdot 10 \cdot 9\sqrt{13} = 360\sqrt{13} \] \[ b^2 - 4ac = (649 + 180\sqrt{13}) - 360\sqrt{13} = 649 - 180\sqrt{13} \] 2. Substitute back into the quadratic formula: \[ y = \frac{18 + 5\sqrt{13} \pm \sqrt{649 - 180\sqrt{13}}}{20} \] ### Step 3: Compare values of \( x \) and \( y \) Now we have two values for \( x \) and two values for \( y \) from the quadratic equations. We need to analyze the relationships: 1. **If \( x < y \)**: Compare the values of \( x \) and \( y \) obtained from the equations. 2. **If \( x > y \)**: Similarly, check if \( x \) is greater than \( y \). 3. **If \( c \geq y \)**: Check if the calculated \( c \) value is greater than or equal to \( y \). 4. **If \( x \leq y \)**: Again, check if \( x \) is less than or equal to \( y \). 5. **If \( x = y \)**: Finally, check if both values are equal. ### Conclusion After performing the calculations and comparisons, we conclude that: - If \( x = 2 \) and \( y = \frac{9}{5} \), then \( x > y \). - If \( x = \frac{\sqrt{13}}{2} \) and \( y = \frac{9}{5} \), then \( x < y \). Thus, the relationships can be summarized as: - \( x > y \) in some cases and \( x < y \) in others.
Promotional Banner

Similar Questions

Explore conceptually related problems

x + y = 5 xy , 3x + 2y = 13 xy ( x ne 0, y ne 0 )

sqrt7y^(2)-6y-13sqrt7=0 :

sqrt(2)x + sqrt(3)y=0 sqrt(5)x - sqrt(2)y=0

Z =13x + 3y x + y le 6, 3x + 2y le 15, x ge 0, y ge 0 .

I. 12x^(2)+ 11x+12 = 10x^(2) + 22x II. 13y^(2) - 18y+3=9y^(2) - 10y

I. 2x^(2)-11x+15 = 0" "II.4y^(2)+13y+9 = 0