Home
Class 14
MATHS
What approximate value should come in pl...

What approximate value should come in place of question mark(?) in the following questions?
`?%of(sqrt((15.85))xx25.02+219.85)=224.11`

A

50

B

45

C

80

D

70

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( ?\% \text{ of } (\sqrt{15.85} \times 25.02 + 219.85) = 224.11 \), we will follow these steps: ### Step 1: Approximate the values 1. Calculate the approximate value of \( \sqrt{15.85} \). - \( \sqrt{15.85} \approx 4 \) (since \( \sqrt{16} = 4 \)). 2. Approximate \( 25.02 \) to \( 25 \). 3. Approximate \( 219.85 \) to \( 220 \). 4. Approximate \( 224.11 \) to \( 224 \). ### Step 2: Substitute the approximated values into the equation Now, substituting the approximated values into the equation: \[ ? \% \text{ of } (4 \times 25 + 220) = 224 \] ### Step 3: Calculate the expression inside the parentheses 1. Calculate \( 4 \times 25 \): - \( 4 \times 25 = 100 \). 2. Add \( 100 \) and \( 220 \): - \( 100 + 220 = 320 \). ### Step 4: Rewrite the equation Now, we rewrite the equation with the calculated values: \[ ? \% \text{ of } 320 = 224 \] ### Step 5: Convert percentage to decimal Convert \( ?\% \) to decimal form: \[ \frac{?}{100} \times 320 = 224 \] ### Step 6: Solve for ? To isolate \( ? \), we rearrange the equation: \[ ? = \frac{224 \times 100}{320} \] ### Step 7: Calculate the value of ? 1. Calculate \( \frac{224 \times 100}{320} \): - First, simplify \( \frac{224}{320} \): - \( \frac{224}{32} = 7 \) and \( \frac{320}{32} = 10 \). - Thus, \( \frac{224}{320} = \frac{7}{10} \). 2. Now multiply by \( 100 \): - \( ? = 7 \times 10 = 70 \). ### Final Answer The approximate value that should come in place of the question mark (?) is \( 70 \). ---
Promotional Banner