Home
Class 14
MATHS
sqrt((9.5xx0.085)/(0.0017xx0.19)) equals...

`sqrt((9.5xx0.085)/(0.0017xx0.19))` equals

A

5

B

50

C

500

D

0.05

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{\frac{9.5 \times 0.085}{0.0017 \times 0.19}} \), we will follow these steps: ### Step 1: Write the expression clearly We start with the expression: \[ \sqrt{\frac{9.5 \times 0.085}{0.0017 \times 0.19}} \] ### Step 2: Convert decimals to fractions Convert the decimals to fractions for easier calculations: - \( 9.5 = \frac{95}{10} \) - \( 0.085 = \frac{85}{1000} \) - \( 0.0017 = \frac{17}{10000} \) - \( 0.19 = \frac{19}{100} \) Substituting these values into the expression gives: \[ \sqrt{\frac{\frac{95}{10} \times \frac{85}{1000}}{\frac{17}{10000} \times \frac{19}{100}}} \] ### Step 3: Simplify the fractions Now simplify the fractions: \[ = \sqrt{\frac{95 \times 85}{10 \times 1000} \div \frac{17 \times 19}{10000}} \] This can be rewritten as: \[ = \sqrt{\frac{95 \times 85 \times 10000}{10 \times 1000 \times 17 \times 19}} \] ### Step 4: Simplify the denominator Calculating the denominator: \[ 10 \times 1000 = 10000 \] So we have: \[ = \sqrt{\frac{95 \times 85 \times 10000}{10000 \times 17 \times 19}} \] The \(10000\) cancels out: \[ = \sqrt{\frac{95 \times 85}{17 \times 19}} \] ### Step 5: Calculate the values Now calculate \( \frac{95}{17} \) and \( \frac{85}{19} \): - \( 95 \div 17 = 5.588 \) (approximately) - \( 85 \div 19 = 4.474 \) (approximately) Now multiply these two results: \[ = 5.588 \times 4.474 \approx 25 \] ### Step 6: Take the square root Now take the square root: \[ \sqrt{25} = 5 \] ### Step 7: Multiply by 10 Finally, since we had \( \sqrt{100} \) in the earlier steps: \[ 5 \times 10 = 50 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{50} \]
Promotional Banner