Home
Class 12
MATHS
What is the value of "tan"^(-1) sqrt3-co...

What is the value of `"tan"^(-1) sqrt3-cot^(-1)(-sqrt3).`

A

`pi/2`

B

`- pi/2`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}(\sqrt{3}) - \cot^{-1}(-\sqrt{3}) \), we can follow these steps: ### Step 1: Rewrite the cotangent inverse term We know that: \[ \cot^{-1}(-x) = \pi - \cot^{-1}(x) \] Applying this to our expression, we get: \[ \cot^{-1}(-\sqrt{3}) = \pi - \cot^{-1}(\sqrt{3}) \] Thus, we can rewrite the expression as: \[ \tan^{-1}(\sqrt{3}) - (\pi - \cot^{-1}(\sqrt{3})) \] ### Step 2: Simplify the expression Substituting the rewritten cotangent inverse back into the expression gives: \[ \tan^{-1}(\sqrt{3}) - \pi + \cot^{-1}(\sqrt{3}) \] Now we can combine the terms: \[ \tan^{-1}(\sqrt{3}) + \cot^{-1}(\sqrt{3}) - \pi \] ### Step 3: Apply the identity We know from trigonometric identities that: \[ \tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2} \] So, applying this identity for \( x = \sqrt{3} \): \[ \tan^{-1}(\sqrt{3}) + \cot^{-1}(\sqrt{3}) = \frac{\pi}{2} \] ### Step 4: Substitute back into the expression Now substituting this back into our expression: \[ \frac{\pi}{2} - \pi \] ### Step 5: Simplify the final expression This simplifies to: \[ \frac{\pi}{2} - \frac{2\pi}{2} = -\frac{\pi}{2} \] ### Final Answer Thus, the value of \( \tan^{-1}(\sqrt{3}) - \cot^{-1}(-\sqrt{3}) \) is: \[ -\frac{\pi}{2} \]
Promotional Banner