Home
Class 12
MATHS
If A=[(2,3),(1,0)]=P+Q, where P is symme...

If `A=[(2,3),(1,0)]=P+Q`, where P is symmetric matrix and Q is skew-symmetric matrix then find the matrix P.

A

`[(5,5),(1,5)]`

B

`[(2,2),(2,0)]`

C

`[(-1,0),(1,2)]`

D

`[(1,0),(0,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the symmetric matrix \( P \) from the equation \( A = P + Q \), where \( A = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} \), \( P \) is symmetric, and \( Q \) is skew-symmetric, we can follow these steps: ### Step 1: Understand the properties of symmetric and skew-symmetric matrices - A symmetric matrix \( P \) satisfies \( P^T = P \). - A skew-symmetric matrix \( Q \) satisfies \( Q^T = -Q \). ### Step 2: Write the equations for \( A \) Given \( A = P + Q \), we can also write: \[ A^T = P^T + Q^T \] ### Step 3: Transpose the matrix \( A \) Calculate the transpose of \( A \): \[ A^T = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}^T = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} \] ### Step 4: Substitute the properties into the equation Using the properties of \( P \) and \( Q \): \[ A^T = P + (-Q) \implies A^T = P - Q \] ### Step 5: Set up the equations Now we have two equations: 1. \( A = P + Q \) 2. \( A^T = P - Q \) Substituting the values of \( A \) and \( A^T \): 1. \( \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} = P + Q \) 2. \( \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} = P - Q \) ### Step 6: Add the two equations Adding the two equations: \[ \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} = (P + Q) + (P - Q) \implies 2P = \begin{pmatrix} 4 & 4 \\ 4 & 0 \end{pmatrix} \] ### Step 7: Solve for \( P \) Dividing both sides by 2: \[ P = \begin{pmatrix} 2 & 2 \\ 2 & 0 \end{pmatrix} \] ### Final Answer Thus, the symmetric matrix \( P \) is: \[ P = \begin{pmatrix} 2 & 2 \\ 2 & 0 \end{pmatrix} \]
Promotional Banner