Home
Class 12
MATHS
Evaluate (dy)/(dx) , if y =(8^x)/(x^8)....

Evaluate `(dy)/(dx) , if y =(8^x)/(x^8)`.

A

`(8x^7)/(8^x "log"8)`

B

`(8^x log8)/(8x^7)`

C

`(8^x)/(x^8)[ "log" 8- 8/x]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \(\frac{dy}{dx}\) for the function \(y = \frac{8^x}{x^8}\), we will use the quotient rule of differentiation. The quotient rule states that if \(y = \frac{u}{v}\), then: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \(u = 8^x\) and \(v = x^8\). ### Step 1: Identify \(u\) and \(v\) Let: - \(u = 8^x\) - \(v = x^8\) ### Step 2: Differentiate \(u\) and \(v\) Now, we need to find \(\frac{du}{dx}\) and \(\frac{dv}{dx}\). 1. **Differentiate \(u\)**: \[ \frac{du}{dx} = 8^x \ln(8) \] (Using the formula \(\frac{d}{dx} a^x = a^x \ln(a)\)) 2. **Differentiate \(v\)**: \[ \frac{dv}{dx} = 8x^7 \] (Using the power rule \(\frac{d}{dx} x^n = nx^{n-1}\)) ### Step 3: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Substituting the values of \(u\), \(v\), \(\frac{du}{dx}\), and \(\frac{dv}{dx}\): \[ \frac{dy}{dx} = \frac{x^8 (8^x \ln(8)) - (8^x)(8x^7)}{(x^8)^2} \] ### Step 4: Simplify the Expression Now, let's simplify the expression: \[ \frac{dy}{dx} = \frac{8^x \left( x^8 \ln(8) - 8x^7 \right)}{x^{16}} \] ### Step 5: Factor Out Common Terms We can factor out \(8^x\) and \(x^7\): \[ \frac{dy}{dx} = \frac{8^x x^7 \left( x \ln(8) - 8 \right)}{x^{16}} \] This simplifies to: \[ \frac{dy}{dx} = \frac{8^x \left( x \ln(8) - 8 \right)}{x^9} \] ### Final Result Thus, the final result for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{8^x \left( x \ln(8) - 8 \right)}{x^9} \]
Promotional Banner