Home
Class 12
MATHS
Evaluate the determinant Delta=|(log3 51...

Evaluate the determinant `Delta=|(log_3 512, log_4 3),(log_3 8, log_4 9)|`

A

`15/2`

B

12

C

`14/3`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant \[ \Delta = \begin{vmatrix} \log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9 \end{vmatrix} \] we will follow the steps below: ### Step 1: Calculate the logs First, we need to express the logarithms in a simpler form. 1. **Calculate \(\log_3 512\)**: \[ 512 = 2^9 \implies \log_3 512 = \log_3 (2^9) = 9 \log_3 2 \] 2. **Calculate \(\log_4 3\)**: Using the change of base formula: \[ \log_4 3 = \frac{\log_3 3}{\log_3 4} = \frac{1}{\log_3 (2^2)} = \frac{1}{2 \log_3 2} \] 3. **Calculate \(\log_3 8\)**: \[ 8 = 2^3 \implies \log_3 8 = \log_3 (2^3) = 3 \log_3 2 \] 4. **Calculate \(\log_4 9\)**: \[ 9 = 3^2 \implies \log_4 9 = \frac{\log_3 9}{\log_3 4} = \frac{2}{2 \log_3 2} = \frac{1}{\log_3 2} \] ### Step 2: Substitute the values into the determinant Now substitute these values into the determinant: \[ \Delta = \begin{vmatrix} 9 \log_3 2 & \frac{1}{2 \log_3 2} \\ 3 \log_3 2 & \frac{1}{\log_3 2} \end{vmatrix} \] ### Step 3: Calculate the determinant Using the formula for the determinant of a 2x2 matrix: \[ \Delta = A \cdot D - B \cdot C \] where \(A = 9 \log_3 2\), \(B = \frac{1}{2 \log_3 2}\), \(C = 3 \log_3 2\), and \(D = \frac{1}{\log_3 2}\). Calculating: \[ \Delta = (9 \log_3 2) \cdot \left(\frac{1}{\log_3 2}\right) - \left(\frac{1}{2 \log_3 2}\right) \cdot (3 \log_3 2) \] This simplifies to: \[ \Delta = 9 - \frac{3}{2} = 9 - 1.5 = 7.5 \] ### Step 4: Final simplification To express \(7.5\) as a fraction: \[ 7.5 = \frac{15}{2} \] Thus, the final value of the determinant is: \[ \Delta = \frac{15}{2} \]
Promotional Banner