Home
Class 12
MATHS
Find (dy)/(dx)|(x= pi/2) where y =e^("si...

Find `(dy)/(dx)|_(x= pi/2)` where `y =e^("sin x")`.

A

1

B

`-1`

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\) for the function \(y = e^{\sin x}\), we will follow these steps: ### Step 1: Differentiate \(y\) with respect to \(x\) Given: \[ y = e^{\sin x} \] To differentiate \(y\) with respect to \(x\), we will use the chain rule. The derivative of \(e^{u}\) with respect to \(x\) is \(e^{u} \cdot \frac{du}{dx}\), where \(u = \sin x\). Thus, we have: \[ \frac{dy}{dx} = e^{\sin x} \cdot \frac{d}{dx}(\sin x) \] ### Step 2: Differentiate \(\sin x\) The derivative of \(\sin x\) is: \[ \frac{d}{dx}(\sin x) = \cos x \] ### Step 3: Substitute back into the derivative Now substituting back, we get: \[ \frac{dy}{dx} = e^{\sin x} \cdot \cos x \] ### Step 4: Evaluate \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\) Now we need to evaluate \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\): \[ \frac{dy}{dx}\bigg|_{x=\frac{\pi}{2}} = e^{\sin\left(\frac{\pi}{2}\right)} \cdot \cos\left(\frac{\pi}{2}\right) \] ### Step 5: Calculate \(\sin\left(\frac{\pi}{2}\right)\) and \(\cos\left(\frac{\pi}{2}\right)\) We know: \[ \sin\left(\frac{\pi}{2}\right) = 1 \quad \text{and} \quad \cos\left(\frac{\pi}{2}\right) = 0 \] ### Step 6: Substitute these values Substituting these values into the derivative: \[ \frac{dy}{dx}\bigg|_{x=\frac{\pi}{2}} = e^{1} \cdot 0 = 0 \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(x = \frac{\pi}{2}\) is: \[ \frac{dy}{dx}\bigg|_{x=\frac{\pi}{2}} = 0 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , where y = (x + 1)^(2x) .

Find (dy)/(dx) where (i) y=e^(log x)+tanx

Find (dy)/(dx) for the function: y=e^(sin x^(2))

Find (dy)/(dx) if y=sin(x^(2))

Find (dy)/(dx) , when: y=2^(x).e^(3x)sin4x

Find (dy)/(dx) ,if y=sin(x^(2))

Find (dy)/(dx) when 2x+3y=sin x

Find (dy)/(dx) , when : If y=((cos x - sin x))/((cos x + sin x)) , prove that (dy)/(dx)+y^(2)+1=0 .

find(dy)/(dx) of y^(y)=sin x