Home
Class 12
MATHS
If x=alpha"sin"^3 t and y=alpha cos^3t, ...

If `x=alpha"sin"^3 t` and `y=alpha cos^3t`, then what is the value of `(dy)/(dx)`?

A

tan t

B

`-cot t`

C

`-tan t`

D

`cot t`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{dy}{dx}\) given \(x = \alpha \sin^3 t\) and \(y = \alpha \cos^3 t\), we will use the chain rule for differentiation. Here are the steps: ### Step 1: Differentiate \(y\) with respect to \(t\) We start with the equation for \(y\): \[ y = \alpha \cos^3 t \] Using the chain rule, we differentiate \(y\) with respect to \(t\): \[ \frac{dy}{dt} = \alpha \cdot 3 \cos^2 t \cdot \frac{d}{dt}(\cos t) \] Since \(\frac{d}{dt}(\cos t) = -\sin t\), we have: \[ \frac{dy}{dt} = \alpha \cdot 3 \cos^2 t \cdot (-\sin t) = -3\alpha \cos^2 t \sin t \] ### Step 2: Differentiate \(x\) with respect to \(t\) Now, we differentiate \(x\): \[ x = \alpha \sin^3 t \] Using the chain rule, we differentiate \(x\) with respect to \(t\): \[ \frac{dx}{dt} = \alpha \cdot 3 \sin^2 t \cdot \frac{d}{dt}(\sin t) \] Since \(\frac{d}{dt}(\sin t) = \cos t\), we have: \[ \frac{dx}{dt} = \alpha \cdot 3 \sin^2 t \cdot \cos t \] ### Step 3: Apply the chain rule to find \(\frac{dy}{dx}\) Now, we can find \(\frac{dy}{dx}\) using the relationship: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the values we found: \[ \frac{dy}{dx} = \frac{-3\alpha \cos^2 t \sin t}{3\alpha \sin^2 t \cos t} \] ### Step 4: Simplify the expression We can simplify this expression: \[ \frac{dy}{dx} = \frac{-3\alpha \cos^2 t \sin t}{3\alpha \sin^2 t \cos t} = \frac{-\cos t}{\sin t} = -\cot t \] ### Final Result Thus, the value of \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\cot t \] ---
Promotional Banner