Home
Class 12
MATHS
The value of "sin"^2 ("cos"^(-1) 1/2) +c...

The value of `"sin"^2 ("cos"^(-1) 1/2) +cos^2("sin"^(-1) 1/3)` is

A

`17/36`

B

`59/36`

C

`36/59`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^2(\cos^{-1}(1/2)) + \cos^2(\sin^{-1}(1/3)) \), we will follow these steps: ### Step 1: Find \( \sin^2(\cos^{-1}(1/2)) \) Let \( \theta = \cos^{-1}(1/2) \). From the definition of the cosine function, we know: \[ \cos(\theta) = \frac{1}{2} \] Using the Pythagorean identity: \[ \sin^2(\theta) + \cos^2(\theta) = 1 \] we can find \( \sin^2(\theta) \): \[ \sin^2(\theta) = 1 - \cos^2(\theta) = 1 - \left(\frac{1}{2}\right)^2 = 1 - \frac{1}{4} = \frac{3}{4} \] ### Step 2: Find \( \cos^2(\sin^{-1}(1/3)) \) Let \( \phi = \sin^{-1}(1/3) \). From the definition of the sine function, we know: \[ \sin(\phi) = \frac{1}{3} \] Using the Pythagorean identity again: \[ \sin^2(\phi) + \cos^2(\phi) = 1 \] we can find \( \cos^2(\phi) \): \[ \cos^2(\phi) = 1 - \sin^2(\phi) = 1 - \left(\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9} \] ### Step 3: Combine the results Now, we can substitute the values we found back into the original expression: \[ \sin^2(\cos^{-1}(1/2)) + \cos^2(\sin^{-1}(1/3)) = \frac{3}{4} + \frac{8}{9} \] To add these fractions, we need a common denominator. The least common multiple of 4 and 9 is 36. Convert each fraction: \[ \frac{3}{4} = \frac{3 \times 9}{4 \times 9} = \frac{27}{36} \] \[ \frac{8}{9} = \frac{8 \times 4}{9 \times 4} = \frac{32}{36} \] Now add them: \[ \frac{27}{36} + \frac{32}{36} = \frac{27 + 32}{36} = \frac{59}{36} \] ### Final Result Thus, the value of \( \sin^2(\cos^{-1}(1/2)) + \cos^2(\sin^{-1}(1/3)) \) is: \[ \frac{59}{36} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of cos^(-1){sin(cos^(-1)(1/2))} is

The value of sin(sin^(-1)(1/2)+cos^(-1)(1/2))=?

Evaluate the following : sin ^(2) ( cos ^(-1) . 1/2) + cos^(2) ( sin^(-1) . 1/3) .

cos("sin"^(-1)(1)/(2)+"cos"^(-1)(1)/(3))=

The value of 2cos^(-1)(-1/2)-2 sin^(-1)(-1/2)-cos^(-1)(-1) is

The value of tan^(-1) [2 sin (cos^(-1) ""(1)/(2))] is

The principal value of cos^(-1)(cos 2pi/3)+ sin^(-1) sin(2pi/3) is

The value of cos^(-1)(cos((pi)/(2)))+cos^(-1)(sin((2pi)/(3))) is